ArgMin
ArgMin.ArgMinArgMin.solve_constrained_nonlinear_least_square_with_augmented_lagragianArgMin.solve_least_squareArgMin.solve_least_squareArgMin.solve_multi_objective_least_squareArgMin.solve_nonlinear_least_square_with_gauss_newtonArgMin.solve_nonlinear_least_square_with_levenberg_marquardtArgMin.solve_nonlinear_least_square_with_newton_raphsonArgMin.solve_qp_with_projected_newton
ArgMin.ArgMin — ModuleOptimization solver written by pure JuliaArgMin.solve_constrained_nonlinear_least_square_with_augmented_lagragian — MethodSolve constrained nonlinear least square with augmentedl lagrangian method
xhat = argmin(|f(x)|^2) s.t g(x) = 0
ArgMin.solve_least_square — Methodsolve constrained least_square
xhat = argmin(|Ax = b|^2) s.t. Cx = dArgMin.solve_least_square — Methodsolve least square
xhat = argmin(|Ax = b|^2)
All are same solution
- xhat = inv(A’*A)*(A’*b)
- xhat = pinv(A)*b
- Q,R = qr(A); xhat = inv(R)*(Q’*b)
- xhat = AArgMin.solve_multi_objective_least_square — Methodsolve multi objective least square
xhat = argmin(λ_1|Ax = b|^2+λ_2|Ax = b|^2...)ArgMin.solve_nonlinear_least_square_with_gauss_newton — Methodsolve nonlinear least square with gauss-newton method
xhat = argmin(|f(x)|^2)ArgMin.solve_nonlinear_least_square_with_levenberg_marquardt — Methodsolve nonlinear least square with levenberg marquardt
xhat = argmin(|f(x)|^2)ArgMin.solve_nonlinear_least_square_with_newton_raphson — Methodsolve nonlinear least square with newton-raphson method
The inputs have to be length(x) == length(f(x)).
If it is not, you cant use solve_nonlinear_least_square_with_gauss_newton
xhat = argmin(|f(x)|^2)ArgMin.solve_qp_with_projected_newton — MethodSolve quadratic programming with projected newton method
argmin(0.5*x'*H*x + x'*g)
s.t. lower<=x<=upper
inputs:
H - positive definite matrix (n * n)
g - a vector (n)
lower - lower bounds (n)
upper - upper bounds (n)
optional inputs:
x0 - initial state (n)
maxIter = 100 maximum number of iterations
minGrad = 1e-8 minimum norm of non-fixed gradient
minRelImprove = 1e-8 minimum relative improvement
stepDec = 0.6 factor for decreasing stepsize
minStep = 1e-22 minimal stepsize for linesearch
Armijo = 0.1 Armijo parameter
verbose = false verbosity
outputs:
xstar - solution (n)
status - status dictionary