State Lattice Planning
This script is a path planning code with state lattice planning.
This code uses the model predictive trajectory generator to solve boundary problem.
Uniform polar sampling

Code Link
- PathPlanning.StateLatticePlanner.state_lattice_planner.calc_uniform_polar_states(nxy, nh, d, a_min, a_max, p_min, p_max)[source]
- Parameters:
nxy – number of position sampling
nh – number of heading sampleing
d – distance of terminal state
a_min – position sampling min angle
a_max – position sampling max angle
p_min – heading sampling min angle
p_max – heading sampling max angle
Biased polar sampling

Code Link
- PathPlanning.StateLatticePlanner.state_lattice_planner.calc_biased_polar_states(goal_angle, ns, nxy, nh, d, a_min, a_max, p_min, p_max)[source]
calc biased state
- Parameters:
goal_angle – goal orientation for biased sampling
ns – number of biased sampling
nxy – number of position sampling
nxy – number of position sampling
nh – number of heading sampleing
d – distance of terminal state
a_min – position sampling min angle
a_max – position sampling max angle
p_min – heading sampling min angle
p_max – heading sampling max angle
- Returns:
states list
Lane sampling

Code Link
- PathPlanning.StateLatticePlanner.state_lattice_planner.calc_lane_states(l_center, l_heading, l_width, v_width, d, nxy)[source]
calc lane states
- Parameters:
l_center – lane lateral position
l_heading – lane heading
l_width – lane width
v_width – vehicle width
d – longitudinal position
nxy – sampling number
- Returns:
state list