State Lattice Planning
This script is a path planning code with state lattice planning.
This code uses the model predictive trajectory generator to solve boundary problem.
Uniform polar sampling
 
Code Link
- PathPlanning.StateLatticePlanner.state_lattice_planner.calc_uniform_polar_states(nxy, nh, d, a_min, a_max, p_min, p_max)[source]
- Parameters:
- nxy – number of position sampling 
- nh – number of heading sampleing 
- d – distance of terminal state 
- a_min – position sampling min angle 
- a_max – position sampling max angle 
- p_min – heading sampling min angle 
- p_max – heading sampling max angle 
 
 
Biased polar sampling
 
Code Link
- PathPlanning.StateLatticePlanner.state_lattice_planner.calc_biased_polar_states(goal_angle, ns, nxy, nh, d, a_min, a_max, p_min, p_max)[source]
- calc biased state - Parameters:
- goal_angle – goal orientation for biased sampling 
- ns – number of biased sampling 
- nxy – number of position sampling 
- nxy – number of position sampling 
- nh – number of heading sampleing 
- d – distance of terminal state 
- a_min – position sampling min angle 
- a_max – position sampling max angle 
- p_min – heading sampling min angle 
- p_max – heading sampling max angle 
 
- Returns:
- states list 
 
Lane sampling
 
Code Link
- PathPlanning.StateLatticePlanner.state_lattice_planner.calc_lane_states(l_center, l_heading, l_width, v_width, d, nxy)[source]
- calc lane states - Parameters:
- l_center – lane lateral position 
- l_heading – lane heading 
- l_width – lane width 
- v_width – vehicle width 
- d – longitudinal position 
- nxy – sampling number 
 
- Returns:
- state list